118 research outputs found

    Doctor of Philosophy

    Get PDF
    dissertationMinimally invasive thermal therapy under Magnetic Resonance Imaging (MRI) guidance is becoming popular with several applications in the process of getting FDA approval. The ability to determine in near real-time the temperature map of a tumor and its surrounding tissue makes MR thermometry very attractive and well suited for thermal treatment. The proton resonance frequency shift (PRF) is currently the gold standard method for temperature monitoring using MRI. However, its incapacity to measure temperature in fatty tissue limits the scope of its applicability. The spin lattice relaxation time T1, on the other hand, has shown good temperature sensitivity and works well in all types of tissues. In this dissertation, we have addressed a number of challenges currently affecting MRI thermometry. A non-CPMG Turbo Spin Echo (TSE) sequence has been implemented to monitor the temperature rise due to the high RF power deposition inherent to this sequence at high field (3T and higher). This new implementation allows TSE sequences to be used safely without altering their high contrast properties which make them appealing in clinical settings. Tissue damage assessment during thermal therapy is critical for the safety of the patient. We have developed a new hybrid PRF-T1 sequence that has the capability to provide simultaneously in near real-time the temperature map and T1 information, which is a good indication of the state of the tissue. The simplicity and the real-time capability of the newly developed sequence make it an ideal tool for tissue damage assessment. Temperature monitoring during thermal therapy in organs with large fat content have been hindered by the lack of an MRI thermometry method that can provide simultaneous temperature in fat and aqueous tissue. A new sequence and acquisition scheme have been developed to address this issue. In sum, this dissertation proposed several pulse sequence implementation techniques and an acquisition scheme to overcome some of the limitations of MR thermometry

    Seasonality and Malaria in a West African Village: Does High Parasite Density Predict Fever Incidence?

    Get PDF
    In this cohort study, the authors studied the effect of blood malaria parasite density on fever incidence in children in an endemic area with 9 days' follow-up of 1- to 12-year-old children during two time periods: the end of the dry season (May 1993: n = 783) and the end of the rainy season (October 1993: n = 841) in Bougoula, West Africa (region of Sikasso, Mali). The cumulative incidence of fever (temperature >38.0°C) was 2.0% in the dry season and 8.2% in the rainy season (p 15, 000/μl (RR = 2.7, 95% Cl 1.4-5.4); in children with an enlarged spleen (RR = 2.0, 95% Cl 1.2-3.3); or in those with anemia (hematocrit <30%: RR = 1.8, 95% Cl 1.1-2.9). In the dry season, anemia was the only predictor of fever incidence. In the rainy season, the best predictors of fever were, in order, age (<4 years), enlarged spleen, and high parasite density. Even in the higher risk groups, the cumulative incidence was <20%. The authors conclude that most children with high parasite density do not develop fever subsequently. The association between parasite density and fever varies according to age and season. Since even high levels of parasite density do not reliably predict fever incidence, parasite density should be considered as just one of a group of indicators that increase the probability of a fever of malarial origin. Am J Epidemiol 1997; 145: 850-

    Multiplication rate variation in the human malaria parasite Plasmodium falciparum.

    Get PDF
    It is important to understand intrinsic variation in asexual blood stage multiplication rates of the most virulent human malaria parasite, Plasmodium falciparum. Here, multiplication rates of long-term laboratory adapted parasite clones and new clinical isolates were measured, using a newly standardised assay of growth from low starting density in replicate parallel cultures with erythrocytes from multiple different donors, across multiple cycles. Multiplication rates of long-term established clones were between 7.6 and 10.5 fold per 48 hours, with clone Dd2 having a higher rate than others (clones 3D7, HB3 and D10). Parasite clone-specific growth was then analysed in co-culture assays with all possible heterologous pairwise combinations. This showed that co-culture of different parasites did not affect their replication rates, indicating that there were no suppressive interactions operating between parasites. Multiplication rates of eleven new clinical isolates were measured after a few weeks of culture, and showed a spectrum of replication rates between 2.3 and 6.0 fold per 48 hours, the entire range being lower than for the long-term laboratory adapted clones. Multiplication rate estimates remained stable over time for several isolates tested repeatedly up to three months after culture initiation, indicating considerable persistence of this important trait variation

    Valid Consent for Genomic Epidemiology in Developing Countries

    Get PDF
    Drawing on experience gained from ongoing research in Mali, this paper describes practical ethical challenges relating to the achievement of valid consent in genomic epidemiology

    Further evidence supporting a role for gs signal transduction in severe malaria pathogenesis.

    Get PDF
    With the functional demonstration of a role in erythrocyte invasion by Plasmodium falciparum parasites, implications in the aetiology of common conditions that prevail in individuals of African origin, and a wealth of pharmacological knowledge, the stimulatory G protein (Gs) signal transduction pathway presents an exciting target for anti-malarial drug intervention. Having previously demonstrated a role for the G-alpha-s gene, GNAS, in severe malaria disease, we sought to identify other important components of the Gs pathway. Using meta-analysis across case-control and family trio (affected child and parental controls) studies of severe malaria from The Gambia and Malawi, we sought evidence of association in six Gs pathway candidate genes: adenosine receptor 2A (ADORA2A) and 2B (ADORA2B), beta-adrenergic receptor kinase 1 (ADRBK1), adenylyl cyclase 9 (ADCY9), G protein beta subunit 3 (GNB3), and regulator of G protein signalling 2 (RGS2). Our study amassed a total of 2278 cases and 2364 controls. Allele-based models of association were investigated in all genes, and genotype and haplotype-based models were investigated where significant allelic associations were identified. Although no significant associations were observed in the other genes, several were identified in ADORA2A. The most significant association was observed at the rs9624472 locus, where the G allele (approximately 20% frequency) appeared to confer enhanced risk to severe malaria [OR = 1.22 (1.09-1.37); P = 0.001]. Further investigation of the ADORA2A gene region is required to validate the associations identified here, and to identify and functionally characterize the responsible causal variant(s). Our results provide further evidence supporting a role of the Gs signal transduction pathway in the regulation of severe malaria, and request further exploration of this pathway in future studies

    Genome-wide SNP analysis of Plasmodium falciparum shows differentiation at drug-resistance-associated loci among malaria transmission settings in southern Mali.

    Get PDF
    Plasmodium falciparum malaria cases in Africa represent over 90% of the global burden with Mali being amongst the 11 highest burden countries that account for 70% of this annual incidence. The persistence of P. falciparum despite massive global interventions is because of its genetic diversity that drives its ability to adapt to environmental changes, develop resistance to drugs, and evade the host immune system. Knowledge on P. falciparum genetic diversity across populations and intervention landscape is thus critical for the implementation of new strategies to eliminate malaria. This study assessed genetic variation with 12,177 high-quality SNPs from 830 Malian P. falciparum isolates collected between 2007 and 2017 from seven locations. The complexity of infections remained high, varied between sites, and showed a trend toward overall decreasing complexity over the decade. Though there was no significant substructure, allele frequencies varied geographically, partly driven by temporal variance in sampling, particularly for drug resistance and antigen loci. Thirty-two mutations in known drug resistance markers (pfcrt, pfdhps, pfdhfr, pfmdr1, pfmdr2, and pfk13) attained a frequency of at least 2% in the populations. SNPs within and around the major markers of resistance to quinolines (pfmdr1 and pfcrt) and antifolates (pfdhfr and pfdhps) varied temporally and geographically, with strong linkage disequilibrium and signatures of directional selection in the genome. These geo-temporal populations also differentiated at alleles in immune-related loci, including, protein E140, pfsurfin8, pfclag8, and pfceltos, as well as pftrap, which showed signatures of haplotype differentiation between populations. Several regions across the genomes, including five known drug resistance loci, showed signatures of differential positive selection. These results suggest that drugs and immune pressure are dominant selective forces against P. falciparum in Mali, but their effect on the parasite genome varies temporally and spatially. Interventions interacting with these genomic variants need to be routinely evaluated as malaria elimination strategies are implemented

    Standardization of the antibody-dependent respiratory burst assay with human neutrophils and Plasmodium falciparum malaria.

    Get PDF
    The assessment of naturally-acquired and vaccine-induced immunity to blood-stage Plasmodium falciparum malaria is of long-standing interest. However, the field has suffered from a paucity of in vitro assays that reproducibly measure the anti-parasitic activity induced by antibodies in conjunction with immune cells. Here we optimize the antibody-dependent respiratory burst (ADRB) assay, which assesses the ability of antibodies to activate the release of reactive oxygen species from human neutrophils in response to P. falciparum blood-stage parasites. We focus particularly on assay parameters affecting serum preparation and concentration, and importantly assess reproducibility. Our standardized protocol involves testing each serum sample in singlicate with three independent neutrophil donors, and indexing responses against a standard positive control of pooled hyper-immune Kenyan sera. The protocol can be used to quickly screen large cohorts of samples from individuals enrolled in immuno-epidemiological studies or clinical vaccine trials, and requires only 6 μL of serum per sample. Using a cohort of 86 samples, we show that malaria-exposed individuals induce higher ADRB activity than malaria-naïve individuals. The development of the ADRB assay complements the use of cell-independent assays in blood-stage malaria, such as the assay of growth inhibitory activity, and provides an important standardized cell-based assay in the field

    Genomic variation during culture adaptation of genetically complex Plasmodium falciparum clinical isolates

    Get PDF
    Experimental studies on the biology of malaria parasites have mostly been based on laboratory-adapted lines, but there is limited understanding of how these may differ from parasites in natural infections. Loss-of-function mutants have previously been shown to emerge during culture of some Plasmodium falciparum clinical isolates in analyses focusing on single-genotype infections. The present study included a broader array of isolates, mostly representing multiple-genotype infections, which are more typical in areas where malaria is highly endemic. Genome sequence data from multiple time points over several months of culture adaptation of 28 West African isolates were analysed, including previously available sequences along with new genome sequences from additional isolates and time points. Some genetically complex isolates eventually became fixed over time to single surviving genotypes in culture, whereas others retained diversity, although proportions of genotypes varied over time. Drug resistance allele frequencies did not show overall directional changes, suggesting that resistance-associated costs are not the main causes of fitness differences among parasites in culture. Loss-of-function mutants emerged during culture in several of the multiple-genotype isolates, affecting genes (including AP2-HS, EPAC and SRPK1) for which loss-of-function mutants were previously seen to emerge in single-genotype isolates. Parasite clones were derived by limiting dilution from six of the isolates, and sequencing identified de novo variants not detected in the bulk isolate sequences. Interestingly, several of these were nonsense mutants and frameshifts disrupting the coding sequence of EPAC, the gene with the largest number of independent nonsense mutants previously identified in laboratory-adapted lines. Analysis of genomic identity by descent to explore relatedness among clones revealed co-occurring non-identical sibling parasites, illustrative of the natural genetic structure within endemic populations

    Highly Variable Expression of Merozoite Surface Protein MSPDBL2 in Diverse Plasmodium falciparum Clinical Isolates and Transcriptome Scans for Correlating Genes.

    Get PDF
    The merozoite surface protein MSPDBL2 of Plasmodium falciparum is under strong balancing selection and is a target of naturally acquired antibodies. Remarkably, MSPDBL2 is expressed in only a minority of mature schizonts of any cultured parasite line, and mspdbl2 gene transcription increases in response to overexpression of the gametocyte development inducer GDV1, so it is important to understand its natural expression. Here, MSPDBL2 in mature schizonts was analyzed in the first ex vivo culture cycle of 96 clinical isolates from 4 populations with various levels of infection endemicity in different West African countries, by immunofluorescence microscopy with antibodies against a conserved region of the protein. In most isolates, less than 1% of mature schizonts were positive for MSPDBL2, but the frequency distribution was highly skewed, as nine isolates had more than 3% schizonts positive and one had 73% positive. To investigate whether the expression of other gene loci correlated with MSPDBL2 expression, whole-transcriptome sequencing was performed on schizont-enriched material from 17 of the isolates with a wide range of proportions of schizonts positive. Transcripts of particular genes were highly significantly positively correlated with MSPDBL2 positivity in schizonts as well as with mspdbl2 gene transcript levels, showing overrepresentation of genes implicated previously as involved in gametocytogenesis but not including the gametocytogenesis master regulator ap2-g. Single-cell transcriptome analysis of a laboratory-adapted clone showed that most individual parasites expressing mspdbl2 did not express ap2-g, consistent with MSPDBL2 marking a developmental subpopulation that is distinct but likely to co-occur alongside sexual commitment. IMPORTANCE These findings contribute to understanding malaria parasite antigenic and developmental variation, focusing on the merozoite surface protein encoded by the single locus under strongest balancing selection. Analyzing the initial ex vivo generation of parasites grown from a wide sample of clinical infections, we show a unique and highly skewed pattern of natural expression frequencies of MSPDBL2, distinct from that of any other antigen. Bulk transcriptome analysis of a range of clinical isolates showed significant overrepresentation of sexual development genes among those positively correlated with MSPDBL2 protein and mspdbl2 gene expression, indicating the MSPDBL2-positive subpopulation to be often coincident with parasites developing sexually in preparation for transmission. Single-cell transcriptome data confirm the absence of a direct correlation with the ap2-g master regulator of sexual development, indicating that the MSPDBL2-positive subpopulation has a separate function in asexual survival and replication under conditions that promote terminal sexual differentiation
    corecore